Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Hazard Mater ; 455: 131551, 2023 Aug 05.
Article in English | MEDLINE | ID: covidwho-2307924

ABSTRACT

The COVID-19 pandemic has generated substantial medical waste (MW), posing risks to society. Based on widespread MW incineration, this study proposes an integrated system with tail gas treatment to convert MW into value-added products with nearly zero emissions. Herein, steam generators and supercritical CO2 cycles were used to recover energy from MW to produce high-temperature/pressure steam and electricity. A simple power generation cycle achieved a net electricity efficiency of 22.4% through optimization. Thermodynamic analysis revealed that the most energy and exergy loss occurred in incineration. Furthermore, a pressurized reactive distillation column purified the resultant tail gas. The effects of inlet temperature, pressure, liquid/gas ratio, and recycle ratio on the removal and conversion efficiencies of NO2 and SO2 were evaluated. Nearly 100% of the SO2 and 75% of the NO2 generated by the incineration of MW have been converted into their acid forms. Based on the proposed tail gas treatment unit, high-purity CO2 (∼98% purity) was finally obtained.

2.
Energies ; 16(3):1074, 2023.
Article in English | MDPI | ID: covidwho-2199931

ABSTRACT

Elevated medical waste has urged the improvement of sustainable medical waste treatments. A bibliometric analysis is initially conducted to investigate scientific development of medical waste management to pinpoint the publication trends, influential articles, journals and countries and study hotspots. Publications on medical waste and its management sharply increased since 2020. The most influential article was written by Klemešet al., and 'Waste Management and Research';is the most productive journal. India, China, the United Kingdom, Iran and Italy have published the most works. The research spotlights have switched from 'human';and 'sustainable development';in 2019 to 'COVID-19';and 'circular economy';in 2021. Since government acts essentially in handling medical waste and controlling disease transmission, rule implementations among the abovementioned countries are summarized to seek gaps between scientific advancement and regulatory frameworks. For accomplishing a circular economy, waste-to-energy technologies (incineration, gasification, pyrolysis, plasma-based treatments, carbonization, hydrogenation, liquefaction, biomethanation, fermentation and esterification) are comprehensively reviewed. Incineration, gasification, pyrolysis and carbonization are relatively feasible methods, their characteristics and limitations are further compared. By holistically reviewing current status of medical waste research, the focal points involved in management at the policy and technical level have been highlighted to find proper routes for medical waste valorization.

SELECTION OF CITATIONS
SEARCH DETAIL